Pr Sandra VUKUSIC

Service de neurologie – sclérose en plaques, pathologies de la myéline et neuro-inflammation

Le service est spécialisé dans la prise en charge de la sclérose en plaques (SEP) et des pathologies inflammatoires et démyélinisantes du système nerveux central (neuro-opticomyélite de Devic, leucodystrophies), y compris chez l’enfant. 

neuro-ophtamologie
Pr-Sandra-VUKUSIC

Projets

Le Professeur Sandra VUKUSIC est le Coordinateur Scientifique de l’OFSEP, un grand outil épidémiologique sur la SEP (sclérose en plaque) à destination de la communauté scientifique française et internationale. Cet outil doit permettre d’aider à répondre à de nombreuses questions sur les causes et mécanismes de la SEP, les facteurs pronostiques de l’évolution de la maladie, l’efficacité et la sécurité des médicaments, l’impact de la maladie sur les patients et la société, etc.

Publications

1. Comparative Effectiveness of Natalizumab Versus Anti-CD20 in Highly Active Relapsing-Remitting Multiple Sclerosis After Fingolimod Withdrawal
Rollot F, Couturier J, Casey R, Wiertlewski S, Debouverie M, Pelletier J, De Sèze J, Labauge P, Ruet A, Thouvenot E, Ciron J, Berger E, Gout O, Clavelou P, Stankoff B, Casez O, Bourre B, Zephir H, Moreau T, Lebrun-Frenay C, Maillart E, Edan G, Neau JP, Montcuquet A, Cabre P, Camdessanché JP, Defer G, Nasr HB, Maurousset A, Hankiewicz K, Pottier C, Leray E, Vukusic S, Laplaud DA

Neurotherapeutics (2022) — Résumé

L
K

learn more

In France, two therapeutic strategies can be offered after fingolimod (FNG) withdrawal to highly active relapsing-remitting multiple sclerosis (RRMS) patients: natalizumab (NTZ) or anti-CD20. We compared the effectiveness of these two strategies as a switch for FNG within the OFSEP database. The primary endpoint was the time to first relapse. Other outcomes were the relapse rates over 3-month periods, time to worsening the EDSS score, proportion of patients with worsened 24-month MRI, time to treatment discontinuation, and incidence rates of serious adverse events. The dynamics of event rates over time were modeled using multidimensional penalized splines, allowing the possibility to model the effects of covariates in a flexible way, considering non-linearity and interactions. A total of 740 patients were included (337 under anti-CD20 and 403 under NTZ). There was no difference between the two treatments regarding the dynamic of the first occurrence of relapse, with a monthly probability of 5.0% at initiation and 1.0% after 6 months. The rate of EDSS worsening increased in both groups until 6 months and then decreased. No difference in the proportion of patients with new T2 lesions at 24 months was observed. After 18 months of follow-up, a greater risk of NTZ discontinuation was found compared to anti-CD20. This study showed no difference between NTZ and anti-CD20 after the FNG switch regarding the clinical and radiological activity. The effect of these treatments was optimal after 6 months and there was more frequent discontinuation of NTZ after 18 months, probably mainly related to JC virus seroconversions.

2. Long-Term Effectiveness, Safety and Tolerability of Fingolimod in Patients with Multiple Sclerosis in Real-World Treatment Settings in France: The VIRGILE Study
Papeix C, Castelnovo G, Leray E, Coustans M, Levy P, Visy JM, Kobelt G, Lamy F, Allaf B, Heintzmann F, Chouette I, Raponi E, Durand B, Grevat E, Kamar D, Debouverie M, Lebrun-Frenay C; Virgile Study Group

Neurol Ther (2022) — Résumé

L
K

Learn more

Introduction: It is important to confirm the effectiveness and tolerability of disease-modifying treatments for relapsing-remitting multiple sclerosis (RRMS) in real-world treatment settings. This prospective observational cohort study (VIRGILE) was performed at the request of the French health authorities. The primary objective was to evaluate the effectiveness of fingolimod 0.5 mg in reducing the annualised relapse rate (ARR) in patients with RRMS. Methods: Participating neurologists enrolled all adult patients with RRMS starting fingolimod treatment between 2014 and 2016, who were followed for 3 years. Follow-up consultations took place at the investigator’s discretion. The primary outcome measure was the change in ARR at month 24 after fingolimod initiation. Relapses and adverse events were documented at each consultation; disability assessment (EDSS) and magnetic resonance imagery were performed at the investigator’s discretion. Results: Of 1055 eligible patients, 633 patients were assessable at month 36; 405 (64.0%) were treated continuously with fingolimod for 3 years. The ARR decreased from 0.92 ± 0.92 at inclusion to 0.31 ± 0.51 at month 24, a significant reduction of 0.58 [95% CI – 0.51 to – 0.65] relapses/year (p < 0.001). Since starting fingolimod, 461 patients (60.9%) remained relapse-free at month 24 and 366 patients (55.5%) at month 36. In multivariate analysis, no previous disease-modifying treatment, number of relapses in the previous year and lower EDSS score at inclusion were associated with a greater on-treatment reduction in ARR. The mean EDSS score remained stable over the course of the study. Sixty-one out of 289 (21.1%) patients presented new radiological signs of disease activity. Treatment-related serious adverse events were lymphopenia (N = 21), bradycardia (N = 19), elevated transaminases (N = 9) and macular oedema (N = 9). Conclusions: The effectiveness and tolerability of fingolimod in everyday clinical practice are consistent with findings of previous phase III studies. Our study highlights the utility of fingolimod for the long-term management of patients with multiple sclerosis.

3. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): a multicentre, double-blind, phase 3, randomised, placebo-controlled trial
Chitnis T, Banwell B, Kappos L, Arnold DL, Gücüyener K, Deiva K, Skripchenko N, Cui LY, Saubadu S, Hu W, Benamor M, Le-Halpere A, Truffinet P, Tardieu M; TERIKIDS Investigators

Lancet Neurol (2021) — Résumé

L
K

Learn more

Background: Therapeutic options for children with multiple sclerosis are scarce. Teriflunomide is approved in more than 80 countries for the treatment of adults with relapsing multiple sclerosis. The TERIKIDS study examined the safety and efficacy of teriflunomide in children with relapsing multiple sclerosis. Methods: The TERIKIDS trial was a multicentre, phase 3, double-blind, parallel-group, randomised, placebo-controlled study conducted at 57 clinical centres in 22 countries in Asia, Europe, the Middle East, North Africa, and North America. The trial enrolled patients aged 10-17 years, diagnosed with relapsing multiple sclerosis and with at least one relapse in the year preceding screening or at least two relapses in the 2 years preceding screening. Patients were randomly assigned (2:1) to oral teriflunomide (dosage equivalent to 14 mg in adults) or matching placebo, using an interactive web and voice response system, for up to 96 weeks. Personnel in all sites and all patients were masked to study treatment in the double-blind period. Early entry into a subsequent 96-week open-label extension phase was possible before the end of the double-blind period for patients with confirmed clinical relapse or high MRI activity (at least five new or enlarged T2 lesions at week 24, followed by at least nine new or enlarged T2 lesions at week 36, or at least five new or enlarged T2 lesions at weeks 36 and 48, or at weeks 48 and 72). The primary endpoint was time to first confirmed clinical relapse by the end of the double-blind period. Key secondary imaging endpoints were number of new or enlarged T2 lesions and number of gadolinium-enhancing lesions per MRI scan. Efficacy endpoints were analysed in the intention-to-treat population, and safety was assessed in all patients randomly assigned to treatment and exposed to the double-blind study medication. This study is registered with ClinicalTrials.gov (trial number NCT02201108) and is closed to recruitment, but an additional optional open-label extension is ongoing. Findings: Between July 24, 2014, and the date of last patient visit on Oct 25, 2019, 185 patients were screened for eligibility, 166 (90%) were enrolled, and 109 were randomly assigned teriflunomide and 57 were randomly assigned placebo. 102 (94%) of 109 and 53 (93%) of 57 completed the double-blind period. Switch to the ongoing open-label extension because of high MRI activity was more frequent than anticipated in the placebo group (14 [13%] of 109 patients in the teriflunomide group vs 15 [26%] of 57 in the placebo group), decreasing the power of the study. After 96 weeks, there was no difference in time to first confirmed clinical relapse with teriflunomide compared with placebo (hazard ratio 0·66, 95% CI 0·39-1·11; p=0·29). Teriflunomide reduced the number of new or enlarged T2 lesions versus placebo by 55% (relative risk 0·45, 95% CI 0·29-0·71; p=0·00061), and the number of gadolinium-enhancing lesions by 75% (relative risk 0·25, 0·13-0·51; p<0·0001). Adverse events occurred in 96 (88%) patients in the teriflunomide group and 47 (82%) patients in the placebo group; serious adverse events occurred in 12 (11%) patients in the teriflunomide group and 6 (11%) patients in the placebo group. Nasopharyngitis, upper-respiratory-tract infection, alopecia, paraesthesia, abdominal pain, and increased blood creatine phosphokinase were more frequent with teriflunomide than with placebo. During the double-blind phase, four patients in the teriflunomide group had pancreatic adverse events (two with acute pancreatitis and two with pancreatic enzyme elevation), of which three events led to treatment discontinuation. Interpretation: No significant difference in time to first confirmed clinical relapse was found, possibly because more patients than expected switched from the double-blind to the open-label treatment period because of high MRI activity. Key secondary imaging analyses and a prespecified sensitivity analysis of probability of relapse or high MRI activity suggest that teriflunomide might have beneficial effects in children with relapsing multiple sclerosis by reducing the risk of focal inflammatory activity.

4. Risk Factors and Time to Clinical Symptoms of Multiple Sclerosis Among Patients With Radiologically Isolated Syndrome
Lebrun-Frénay C, Rollot F, Mondot L, Zephir H, Louapre C, Le Page E, Durand-Dubief F, Labauge P, Bensa C, Thouvenot E, Laplaud D, de Seze J, Ciron J, Bourre B, Cabre P, Casez O, Ruet A, Mathey G, Berger E, Moreau T, Al Khedr A, Derache N, Clavelou P, Guennoc AM, Créange A, Neau JP, Tourbah A, Camdessanché JP, Maarouf A, Callier C, Vermersch P, Kantarci O, Siva A, Azevedo C, Makhani N, Cohen M, Pelletier D, Okuda D, Vukusic S; RISC, SFSEP, and OFSEP Investigators

JAMA Netw Open (2021) — Résumé

L
K

learn more

Importance: Younger age, oligoclonal bands, and infratentorial and spinal cord lesions are factors associated with an increased 10-year risk of clinical conversion from radiologically isolated syndrome (RIS) to multiple sclerosis (MS). Whether disease-modifying therapy is beneficial for individuals with RIS is currently unknown. Objectives: To evaluate the 2-year risk of a clinical event (onset of clinical symptoms of MS) prospectively, identify factors associated with developing an early clinical event, and simulate the sample size needed for a phase III clinical trial of individuals with RIS meeting 2009 RIS criteria. Design, setting, and participants: This cohort study used data on prospectively followed-up individuals with RIS identified at 1 of 26 tertiary centers for MS care in France that collect data for the Observatoire Français de la Sclérose en Plaques database. Participants were aged 10 to 80 years with 2 or more magnetic resonance imaging (MRI) scans after study entry and an index scan after 2000. All diagnoses were validated by an expert group, whose review included a double centralized MRI reading. Data were analyzed from July 2020 to January 2021. Exposure: Diagnosis of RIS. Main outcomes and measures: Risk of clinical event and associated covariates at index scan were analyzed among all individuals with RIS. Time to the first clinical event was compared by covariates, and sample size estimates were modeled based on identified risk factors. Results: Among 372 individuals with RIS (mean [SD] age at index MRI scan, 38.6 [12.1] years), 354 individuals were included in the analysis (264 [74.6%] women). A clinical event was identified among 49 patients (13.8%) within 2 years, which was associated with an estimated risk of conversion of 19.2% (95% CI, 14.1%-24.0%). In multivariate analysis, age younger than 37 years (hazard ratio [HR], 4.04 [95% CI, 2.00-8.15]; P < .001), spinal cord lesions (HR, 5.11 [95% CI, 1.99-13.13]; P = .001), and gadolinium-enhancing lesions on index scan (HR, 2.09 [95% CI, 1.13-3.87]; P = .02) were independently associated with an increased risk of conversion to MS. Having 2 factors at the time of the index MRI scan was associated with a risk of 27.9% (95% CI, 13.5%-39.9%) of a seminal event within 2 years, increasing to 90.9% (95% CI, 41.1%-98.6%) for individuals with all 3 factors (3 risk factors vs none: HR, 23.34 [95% CI, 9.08-59.96]; P < .001). Overall, with 80% power to detect an effect size of 60% within 24 months, a total of 160 individuals with RIS were needed assuming an event rate of 20%. Conclusions and relevance: This study found that age younger than age 37 years, spinal cord involvement, and gadolinium-enhancing lesions on index MRI scan were associated with earlier clinical disease and relevant to the number of enrolled patients needed to detect a potential treatment effect.

5. Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge dataset
Commowick O, Kain M, Casey R, Ameli R, Ferré JC, Kerbrat A, Tourdias T, Cervenansky F, Camarasu-Pop S, Glatard T, Vukusic S, Edan G, Barillot C, Dojat M, Cotton F

Neuroimage (2021) — Résumé

L
K

learn more

MRI plays a crucial role in multiple sclerosis diagnostic and patient follow-up. In particular, the delineation of T2-FLAIR hyperintense lesions is crucial although mostly performed manually – a tedious task. Many methods have thus been proposed to automate this task. However, sufficiently large datasets with a thorough expert manual segmentation are still lacking to evaluate these methods. We present a unique dataset for MS lesions segmentation evaluation. It consists of 53 patients acquired on 4 different scanners with a harmonized protocol. Hyperintense lesions on FLAIR were manually delineated on each patient by 7 experts with control on T2 sequence, and gathered in a consensus segmentation for evaluation. We provide raw and preprocessed data and a split of the dataset into training and testing data, the latter including data from a scanner not present in the training dataset. We strongly believe that this dataset will become a reference in MS lesions segmentation evaluation, allowing to evaluate many aspects: evaluation of performance on unseen scanner, comparison to individual experts performance, comparison to other challengers who already used this dataset, etc.

6. Myelin-oligodendrocyte glycoprotein antibody-associated disease
Marignier R, Hacohen Y, Cobo-Calvo A, Pröbstel AK, Aktas O, Alexopoulos H, Amato MP, Asgari N, Banwell B, Bennett J, Brilot F, Capobianco M, Chitnis T, Ciccarelli O, Deiva K, De Sèze J, Fujihara K, Jacob A, Kim HJ, Kleiter I, Lassmann H, Leite MI, Linington C, Meinl E, Palace J, Paul F, Petzold A, Pittock S, Reindl M, Sato DK, Selmaj K, Siva A, Stankoff B, Tintore M, Traboulsee A, Waters P, Waubant E, Weinshenker B, Derfuss T, Vukusic S, Hemmer B

Lancet Neurol (2021) — Résumé

L
K

learn more

Myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified autoimmune disorder that presents in both adults and children as CNS demyelination. Although there are clinical phenotypic overlaps between MOGAD, multiple sclerosis, and aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder (NMOSD) cumulative biological, clinical, and pathological evidence discriminates between these conditions. Patients should not be diagnosed with multiple sclerosis or NMOSD if they have anti-MOG antibodies in their serum. However, many questions related to the clinical characterisation of MOGAD and pathogenetic role of MOG antibodies are still unanswered. Furthermore, therapy is mainly based on standard protocols for aquaporin-4 antibody-associated NMOSD and multiple sclerosis, and more evidence is needed regarding how and when to treat patients with MOGAD.

7. Clinical Features and Risk of Relapse in Children and Adults with Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease
Lépine AF, Maurey H, Zephir H, Biotti D, Ciron J, Durand-Dubief F, Collongues N, Ayrignac X, Labauge P, Meyer P, Thouvenot E, Bourre B, Montcuquet A, Cohen M, Horello P, Tintoré M, De Seze J, Vukusic S, Deiva K, Marignier R; NOMADMUS, KidBioSEP, and OFSEP study groups

Ann Neurol (2021) — Résumé

L
K

Learn more 

Objective: The main objective was to compare clinical features, disease course, and myelin oligodendrocyte glycoprotein (MOG) antibody (Ab) dynamics between children and adults with MOG-Ab-associated disease (MOGAD). Methods: This retrospective multicentric, national study included 98 children and 268 adults with MOGAD between January 2014 and September 2019. Cox regression model for recurrent time-to-event data and Kaplan-Meier curves for time to antibody negativity were performed for the objectives. Results: Isolated optic neuritis was the most frequent clinical presentation in both children (40.8%) and adults (55.9%, p = 0.013), and acute disseminated encephalomyelitis syndrome was more frequent in children (36.7% vs 5.6%, p < 0.001). Compared to adults, children displayed better recovery (Expanded Disability Status Scale ≥ 3.0 at last follow-up reached only by 10 of 97 [10.3%] vs 66/247 [26.7%], p < 0.001). In the multivariate analysis, adults were at higher risk of relapse than children (hazard ratio = 1.41, 95% confidence interval [CI] = 1.12-1.78, p = 0.003). At 2 years, 64.2% (95% CI = 40.9-86.5) of nonrelapsing children became MOG-Ab negative compared to 14.1% (95% CI = 4.7-38.3) of relapsing children (log-rank p < 0.001), with no differences observed in adults (log-rank p = 0.280). Interpretation: MOGAD patients differ in the clinical presentation at onset, showing an age-related shift in the clinical features across age groups. Compared to children, adults have a higher risk of relapse and worse functional recovery. Finally, children with monophasic disease become MOG-Ab negative earlier than relapsing children, but this is not true in adults. Considering these differences, management and treatment guidelines should be considered independently in children and adults. ANN NEUROL 2021;89:30-41.

8. Connexins in neuromyelitis optica: a link between astrocytopathy and demyelination
Richard C, Ruiz A, Cavagna S, Bigotte M, Vukusic S, Masaki K, Suenaga T, Kira JI, Giraudon P, Marignier R

Brain (2020) — Résumé

L
K

learn more

Neuromyelitis optica, a rare neuroinflammatory demyelinating disease of the CNS, is characterized by the presence of specific pathogenic autoantibodies directed against the astrocytic water channel aquaporin 4 (AQP4) and is now considered as an astrocytopathy associated either with complement-dependent astrocyte death or with astrocyte dysfunction. However, the link between astrocyte dysfunction and demyelination remains unclear. We propose glial intercellular communication, supported by connexin hemichannels and gap junctions, to be involved in demyelination process in neuromyelitis optica. Using mature myelinated cultures, we demonstrate that a treatment of 1 h to 48 h with immunoglobulins purified from patients with neuromyelitis optica (NMO-IgG) is responsible for a complement independent demyelination, compared to healthy donors’ immunoglobulins (P < 0.001). In parallel, patients’ immunoglobulins induce an alteration of connexin expression characterized by a rapid loss of astrocytic connexins at the membrane followed by an increased size of gap junction plaques (+60%; P < 0.01). This was co-observed with connexin dysfunction with gap junction disruption (-57%; P < 0.001) and increased hemichannel opening (+17%; P < 0.001), associated with glutamate release. Blocking connexin 43 hemichannels with a specific peptide was able to prevent demyelination in co-treatment with patients compared to healthy donors’ immunoglobulins. By contrast, the blockade of connexin 43 gap junctions with another peptide was detrimental for myelin (myelin density -48%; P < 0.001). Overall, our results suggest that dysregulation of connexins would play a pathogenetic role in neuromyelitis optica. The further identification of mechanisms leading to connexin dysfunction and soluble factors implicated, would provide interesting therapeutic strategies for demyelinating disorders.

9. Delay from treatment start to full effect of immunotherapies for multiple sclerosis
Roos I, Leray E, Frascoli F, Casey R, Brown JWL, Horakova D, Havrdova EK, Trojano M, Patti F, Izquierdo G, Eichau S, Onofrj M, Lugaresi A, Prat A, Girard M, Grammond P, Sola P, Ferraro D, Ozakbas S, Bergamaschi R, Sá MJ, Cartechini E, Boz C, Granella F, Hupperts R, Terzi M, Lechner-Scott J, Spitaleri D, Van Pesch V, Soysal A, Olascoaga J, Prevost J, Aguera-Morales E, Slee M, Csepany T, Turkoglu R, Sidhom Y, Gouider R, Van Wijmeersch B, McCombe P, Macdonell R, Coles A, Malpas CB, Butzkueven H, marignierc S, Kalincik T; MSBase; OFSEP investigators

Brain (2020) — Résumé

L
K

learn more

In multiple sclerosis, treatment start or switch is prompted by evidence of disease activity. Whilst immunomodulatory therapies reduce disease activity, the time required to attain maximal effect is unclear. In this study we aimed to develop a method that allows identification of the time to manifest fully and clinically the effect of multiple sclerosis treatments (‘therapeutic lag’) on clinical disease activity represented by relapses and progression-of-disability events. Data from two multiple sclerosis registries, MSBase (multinational) and OFSEP (French), were used. Patients diagnosed with multiple sclerosis, minimum 1-year exposure to treatment, minimum 3-year pretreatment follow-up and yearly review were included in the analysis. For analysis of disability progression, all events in the subsequent 5-year period were included. Density curves, representing incidence of relapses and 6-month confirmed progression events, were separately constructed for each sufficiently represented therapy. Monte Carlo simulations were performed to identify the first local minimum of the first derivative after treatment start; this point represented the point of stabilization of treatment effect, after the maximum treatment effect was observed. The method was developed in a discovery cohort (MSBase), and externally validated in a separate, non-overlapping cohort (OFSEP). A merged MSBase-OFSEP cohort was used for all subsequent analyses. Annualized relapse rates were compared in the time before treatment start and after the stabilization of treatment effect following commencement of each therapy. We identified 11 180 eligible treatment epochs for analysis of relapses and 4088 treatment epochs for disability progression. External validation was performed in four therapies, with no significant difference in the bootstrapped mean differences in therapeutic lag duration between registries. The duration of therapeutic lag for relapses was calculated for 10 therapies and ranged between 12 and 30 weeks. The duration of therapeutic lag for disability progression was calculated for seven therapies and ranged between 30 and 70 weeks. Significant differences in the pre- versus post-treatment annualized relapse rate were present for all therapies apart from intramuscular interferon beta-1a. In conclusion we have developed, and externally validated, a method to objectively quantify the duration of therapeutic lag on relapses and disability progression in different therapies in patients more than 3 years from multiple sclerosis onset. Objectively defined periods of expected therapeutic lag allows insights into the evaluation of treatment response in randomized clinical trials and may guide clinical decision-making in patients who experience early on-treatment disease activity. This method will subsequently be applied in studies that evaluate the effect of patient and disease characteristics on therapeutic lag.

10. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
International Multiple Sclerosis Genetics Consortium

Science (2019) — Résumé

L
K

learn more

We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses.